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Abstract: We construct a family of separable Hilbertian operator spaces, such that
the relation of complete isomorphism between the subspaces of each member of
this family is complete Kσ . We also investigate some interesting properties of
completely unconditional bases of the spaces from this family. In the Banach
space setting, we construct a space for which the relation of isometry of subspaces
is equivalent to equality of real numbers.
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1 Introduction and main results

Recently, there has been much progress in describing the complexity of various relations
between subspaces of a given separable Banach space. The reader is referred to [4, 5, 6]
for the known results on the relations of isomorphism, biembeddability, and more.
Isometry and local equivalence (finite representability) are handled in [16] and [7],
respectively.

In this paper, we consider an operator space analogue of this problem (see Section 2 for
a brief introduction into operator spaces). The Effros-Borel structure on the set S(Z) of
infinite-dimensional subspaces of a separable operator space Z is defined in the same
way as for Banach spaces, see e.g. [11, Chapter 12], or [6]. Reasoning as in Section 2
of [6], we show that the relations of complete isomorphism, complete biembeddability,
and such, defined on S(Z), are analytic equivalence relations.

In the commutative space setting, the famous Gowers-Komorowski-Tomczak Theorem
(see e.g. [25]) shows that any separable Banach space, isomorphic to all of its infinite
dimensional subspaces, must be isomorphic to �2 . The space �2 can be equipped with
uncountably many 1-homogeneous operator space structures (an operator space X is
called 1-homogeneous if the equality �u� = �u�cb holds for any u ∈ B(X)). For
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instance, the row and column spaces R and C, as well as their complex interpolation
spaces (R,C)θ , have this property. These, and other, examples of homogeneous
Hilbertian spaces can be found, for instance, in [21, 22] (an operator space is called
Hilbertian if it is isomorphic to a Hilbert space). Clearly, any 1-homogeneous operator
space, having �2 as its underlying Banach space, is completely isometric to all of its
infinite dimensional subspaces. For such spaces, the relation of complete isomorphism
between infinite dimensional subspaces is trivial.

It is not known how “simple” the relation of complete isomorphism between subspaces
of X may get if X is not homogeneous (or not isomorphic to a Hilbert space). Our
main result provides a partial answer to this question.

Theorem 1.1 There exists a family F of operator spaces, such that, for any operator
space X ∈ F, the following is true:

(1) X is isometric to �2 .
(2) The relation of complete isomorphism and complete biembeddability on S(X)

are Borel bireducible to the complete Kσ relation.

The family F contains a continuum of operator spaces, not completely isomorphic to
each other.

It is possible to prove that the relation of complete isometry on S(X) (X ∈ F) is
Borel bireducible to the equality on R. The proof proceeds along the same lines as
Theorem 6.1, but is exceedingly technical, and not very illuminating. We therefore
omit it, and present a related Theorem 1.4 instead.

Each space from F has its canonical basis (defined in Section 4), which is 1-completely
unconditional. It turns out these bases have interesting properties of their own.

Theorem 1.2 Any subspace Y of an operator space X from the family F has 1-
completely unconditional canonical basis. Any C-completely unconditional basis in
such a Y is φ(C)-equivalent (up to a permutation) to the canonical basis of Y , with
φ(C) polynomial in C .

For certain spaces X , a stronger result holds.

Theorem 1.3 For any a > 1 there exists an operator space X , belonging to the family
F, such that the canonical basis in any subspace of X is a-equivalent to a subsequence
of the canonical basis of X . Consequently, every C-completely unconditional basic
sequence in X is φ(C)-equivalent (up to a permutation) to a subsequence of the
canonical basis, with φ(C) polynomial in C .
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Note that homogeneous Hilbertian operator spaces satisfy the conditions of the three
theorems above. The spaces from the family F are not homogeneous, yet, by Theorems
1.2 and 1.3, they share certain essential properties of homogeneous spaces.

As part of our motivation lies in the field of Banach spaces, we mention a few classical
results related to Theorems 1.1, 1.2, and 1.3.

No “commutative” counterpart of Theorem 1.1 has yet been obtained: for a Banach
space E , very little is known about the “upper” estimates on the complexity of the
isomorphism relation on S(E). It is possible that the relation of isomorphism on S(E)
is complete analytic whenever E is a separable Banach space, not isomorphic to �2 .

Theorem 1.2 shows (among other things) that every subspace of X has an unconditional
basis. In the commutative setting, �2 is the known only separable Banach space with
the property that each of its separable subspaces has an unconditional basis. It is a
long-standing open question (see e.g. [8, p. 203]) whether there exist other spaces
sharing the same property. If a separable E has this property, it must be “close to” �2 .
First, any subspace of E has the Approximation Property, therefore, by [15, Theorem
1.g.6], E has to have type 2 − ε and cotype 2 + ε for any ε > 0. Furthermore, by
[20, Theorem 10.13], E has weak cotype 2. By [12], E is �2 -saturated. Finally, if
E = �2(F) for some Banach space F , then E is isomorphic to a Hilbert space [13].

Searching for a “commutative” analogue of Theorem 1.3, we strengthen the question
posed in the previous paragraph: suppose a Banach space E has an unconditional
basis (ei), such that every subspace of E has an unconditional basis, equivalent to a
subsequence of (ei). Must E be isomorphic to �2 ?

Finally, in the Banach space setting, we construct a space E , not isometric to �2 , but
whose subspace structure is “very simple.”

Theorem 1.4 The following equivalence relations between infinite dimensional sub-
spaces of R⊕1 �2 (or, in the complex case, C⊕1 �2 ) are Borel bireducible to (R,=):
(i) isometry, (ii) having Banach-Mazur distance 1; (iii) isometric bi-embeddability;
(iv) almost isometric bi-embeddability.

Recall that the Banach-Mazur distance between Y and Z is defined as d(Y, Z) =
inf{�u��u−1� : u ∈ B(Y, Z)}. Y is called almost isometrically embeddable into Z
if for every ε > 0 there exists Yε �→ Z s.t. d(Y, Yε) < 1 + ε (d(·, ·) denotes the
Banach-Mazur distance between spaces).

The rest of the paper is organized as follows: Section 2 provides a brief introduction
into operator spaces and c.b. maps. In Section 3 we construct, for each contraction
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A ∈ B(�2), a subspace X(A) of R ⊕ C, and study the properties of the spaces X(A).
Further investigation is carried out in Section 4, where we concentrate on the case when
A is compact. Unconditional bases in the spaces X(A) are described in Section 5. In
Section 6 we show that, for the “right” compact contractions A, the relations of complete
isomorphism and complete biembeddability on S(X(A)) are Borel bireducible to the
complete Kσ relation. Having gathered all the preliminary results, we prove Theorems
1.1, 1.2, and 1.3 in Section 7. Finally, in Section 8 we prove Theorem 1.4.
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second author was partially supported by NSF grants DMS 0901405 and DMS 0919700.
We would like to thank the referee for valuable comments, and, in particular, for
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2 Introduction into operator spaces

As our paper deals primarily with operator spaces, we are compelled to recall some
basic definitions and facts about the topic. An interested reader is referred to [3, 19, 22]
for more information. A (concrete) operator space X is, for us, just a closed subspace
of B(H) (H is a Hilbert space). If X and Y are operator spaces, embedded into B(H)
and B(K) respectively, we defined the minimal tensor product of X and Y (denoted
simply by X ⊗ Y ) as the closure of the algebraic tensor product X ⊙ Y in B(H ⊗2 K).
It is common to denote Mn ⊗ X by Mn(X). Here, Mn = B(�n

2) is the space of
n × n matrices. We view Mn(X) as the space of X -valued n × n matrices, with the
norm � · �n . It is easy to see that the sequence of matricial norms � · �n satisfies
two properties (Ruan’s axioms): (i) for any v ∈ Mn(X), α ∈ Mn,k , and β ∈ Mk,n ,
�(β ⊗ IX)v(α ⊗ IX)�k � �β��x�n�α�, and (ii) for any v ∈ Mn(X) and w ∈ Mk(X)�,
�v ⊕ w�k+n = max{�v�n, �w�k}. It turns out that the converse is also true. Suppose
X is a matricially normed space – that is, it is a Banach space, for which the spaces
Mn(X) of n × n X -valued matrices are equipped with the norms � · �n , satisfying (i)
and (ii) above. Then the norms � · �n arise from an isometric embedding of X into
B(H), for some Hilbert space H . The spaces X as above are sometimes called abstract
operator spaces.

It is easy to see that a subspace of an operator space is, again, an operator space (we use
the notation �→ to denote one operator space being a subspace of another). Moreover,
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a quotient and the dual of an operator space can be again equipped with an operator
space structure. Once again, the reader is referred to [3, 19, 22] for details.

A map u from an operator space X to an operator space Y is called completely bounded
(c.b. for short) if its c.b. norm

�u�cb = sup
n

�IMn ⊗ u�B(Mn(X),Mn(Y)) = �IB(�2) ⊗ u�B(B(�2)⊗X,B(�2)⊗Y)

is finite. The set of all c.b. maps from X to Y is denoted by CB(X, Y). Clearly,
�u�cb ≥ �u�, and CB(X, Y) ⊂ B(X, Y) (the inclusion may be strict). The operator
spaces X and Y are called completely isomorphic (completely isometric) if there exists
u ∈ CB(X, Y) such that u−1 is c.b. (resp. �u�cb = �u−1�cb = 1). We shall use
the notation � for complete isomorphism. Moreover, we say that X is c-completely
isomorphic to Y (X

c
� Y ) if there exists u ∈ CB(X, Y) with �u�cb�u−1�cb � c.

Complete embeddability and biembeddability are defined in the obvious way.

Suppose the operator space s X and Y are embedded into B(H) and B(K), respectively.
We define the direct sum of operator spaces X and Y (denoted by X ⊕∞ Y , or
simply X ⊕ Y ) by viewing X ⊕ Y as embedded into B(H ⊕2 K). Note that any
u ∈ Mn(X ⊕ Y) has a unique expansion as v ⊕ w, with v ∈ Mn(X) and w ∈ Mn(Y).
Then �u� = max{�v�, �w�}.

Throughout this paper, we work with the row and column spaces. Recall that a Hilbert
space H can be equipped with row and column operator space structure, denoted by
HR and HC , respectively. The space HR is defined as the linear space of operators
ξ⊗ ξ0 , where ξ0 is a fixed unit vector, and ξ runs over H . Here, for ξ ∈ H and η ∈ K ,
ξ ⊗ η denotes the operator in B(H,K), defined by (ξ ⊗ η)ζ = �ζ, ξ�η . Similarly, the
space HC is defined as the space of operators ξ0 ⊗ ξ (ξ ∈ H ).

It is easy to see that, if K is a subspace of H , then KC (KR ) is a subspace of HC
(resp. HR ). For simplicity of notation, we write denoted by R and C, instead of (�2)R
and (�2)C , respectively. One can use matrix units to describe these spaces. We denote
by Eij ∈ B(�2) the infinite matrix with 1 on the intersection of the i-th row and the
j-th column, and zeroes elsewhere. Then R (C) is the closed linear span of (E1j)∞j=1
(respectively, (Ei1)∞i=1)). Below we list a few useful properties of row and column
spaces. Here, H and K are Hilbert spaces.

(1) HR and HC are isometric to H (as Banach spaces).

(2) For any u ∈ B(H,K), �u� = �u�CB(HR,KR) = �u�CB(HC,KC) .
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(3) If (ξi) is an orthonormal system in H , then, for any finite sequence (ai) of
elements of Mn ,

�
�

i ai ⊗ ξi�Mn(HR) = �(
�

i aia∗i )1/2� = �
�

i aia∗i �1/2,
�
�

i aj ⊗ ξi�Mn(HC) = �(
�

i a∗i ai)1/2� = �
�

i a∗i ai�
1/2.

(4) Suppose H(1), . . . ,H(n) are Hilbert spaces. Then the formal identity map id :
(H(1) ⊕2 . . . ⊕2 H(n))R → H(1)

R ⊕ . . . ⊕ H(n)
R is a complete contraction, and

�id−1�cb � √
n. The same is also true for column spaces.

(5) For any u ∈ CB(HR,KC) or u ∈ CB(HC,KR), �u�2 = �u�cb (here, � · �2 is the
Hilbert-Schmidt norm).

(6) Duality: H∗
R = HC , and H∗

C = HR .

(7) For any operator space X and any u ∈ B(X,HC) (u ∈ B(X,HR)), �u�cb =
�IC ⊗u�B(C⊗X,C⊗HC) (resp. �u�cb = �IR ⊗u�B(R⊗X,R⊗HR) ). This result follows
from the proof of Smith’s lemma – see e.g. Proposition 2.2.2 of [3].

(8) If H is separable infinite dimensional, then HR (HC ) is completely isometric to
R (resp. C).

A sequence (xi)i∈I in an operator space X is called normalized if �xi� = 1 for every
i ∈ I . (xi) is said to be a c-completely unconditional basic sequence (c ≥ 1) if, for any
finite sequence of matrices (ai), and any sequence of scalars λi ∈ {λ ∈ C : |λ| � 1},
we have �

�
i λiai ⊗ xi�Mn(X) � c�

�
i ai ⊗ xi�Mn(X) . It is easy to see that any such

sequence (xi) is linearly independent. A c-completely unconditional basic sequence
(xi) ⊂ X is called a c-completely unconditional basis in X if X = span[xi : i ∈ I]
(here and below, span[F] refers to the closed linear span of the family F ).

A convenient example of a normalized 1-completely unconditional basis is provided by
an orthonormal basis in R or C. For future reference, we observe that any completely
unconditional basis is “similar to” an orthogonal one. More precisely, suppose X is
an operator space, which is isometric to a Hilbert space (this is the setting we are
concerned with in this paper). Suppose, furthermore, that (xi) is a normalized c-
completely unconditional basis in an operator space X , isometric to a Hilbert space,
then (xi) is “similar to” an orthonormal basis: for any finite sequence of scalars (αi),

c2
�

�

i

αixi�
2
≥ Ave±�

�

i

±αixi�
2 =

�

i

|αi|
2,

and similarly, c−2�
�

i αixi�
2 � �

i |αi|
2 . Thus, there exists an U : X → �2(I), s.t.

(Uxi)i∈I is an orthonormal basis, and �U�, �U−1� � c.

Families (xi)i∈I and (yi)i∈I in operator spaces X and Y , respectively, are called c-
equivalent if there exists a map u : span[xi : i ∈ I] → span[yi : i ∈ I], such
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that uxi = yi , and �u�cb�u−1�cb � c. Two sequences are equivalent if they are c-
equivalent, for some c. Furthermore, (xi)i∈I is c-equivalent to a subfamily of (yj)j∈J if
there exists a subset I� ⊂ J , such that |I| = |I�|, and (xi)i∈I is c-equivalent to (yj)j∈I� .
Finally, (xi)i∈I is c-equivalent to (yi)i∈I up to a permutation if there exists a bijection
π : I → I such that (xi)i∈I is c-equivalent to (yπ(i))i∈I .

A sequence (xi)i∈I is called completely unconditional if it is c-completely uncondi-
tional, for some c. A completely unconditional basis, equivalence of sequences etc.
are defined by dropping the c, in a similar manner.

3 Subspaces of R ⊕ C: basic facts

Suppose H and K are separable Hilbert spaces, and A ∈ B(H,K) is a contraction.
Denote by XR(H,K,A) the subspace of HR ⊕KC , spanned by (e,Ae) (e ∈ H ). If there
is no confusion as to the spaces H and K , we simply write XR(A). XC(A) is defined
in the same way. Often, we write X(A) (X(H,K,A)) instead of XR(A) (XR(H,K,A)).
Note that the formal identity map id : H → X(H,K,A) : ξ �→ ξ ⊕ Aξ is an isometry.
Thus, we identify subspaces of X(H,K,A) with those of H . This identification gives
meaning to the notation A|Y , where Y �→ X(A).

Remark 3.1 Although the spaces R and C are “simple”, the structure of their direct
sum R ⊕ C is rather rich. For instance, it was shown in [27] that the “operator Hilbert
space” OH is a subspace of a quotient of R ⊕ C (actually, the results of that paper are
much more general). It follows from [27] that the spaces X(A) (A ∈ B(�2)) defined as
above are natural “building blocks” of subspaces of R ⊕ C.

Begin by stating a simple lemma.

Lemma 3.2 Suppose H , K , and K� are Hilbert spaces, and A ∈ B(H,K) is a contrac-
tion.

(1) Suppose U ∈ B(K,K�) is such that �Uξ� = �ξ� for any ξ ∈ ran A. Then
X(H,K,A) is completely isometric to X(H,K�,UA). In particular, X(H,K,A) is
completely isometric to X(H,H, |A|), where |A| = (A∗A)1/2 .

(2) Suppose P1, . . . ,Pm and Q1, . . . ,Qm are families of orthogonal mutually orthog-
onal projections on H and K , respectively, such that

�
k Pk = IH ,

�
k Qk = IK ,

and A =
�m

k=1 QkAPk . Set Hk = Pk(H) and Kk = Qk(K). Then the
formal identity operator id from X(H,K,A) to X(H1,K1,Q1AP1) ⊕ . . . ⊕
X(Hm,Km,QmAPm) is a complete contraction, and �id−1�cb � √

m.
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(3) X(A) is |λ|−1 -completely isomorphic to X(λA) whenever 0 < |λ| � 1.

Proof We only establish part (2). A Gram-Schmidt orthogonalization shows that any
element x ∈ Mn(H) can be written as x = x1 + . . . + xn , with xk =

�
i aki ⊗ ξki

aki ∈ Mn , and (ξki) a finite orthonormal systems in Hk . Then

�x�Mn(X(A)) = max {�
�

k

�

i

aki ⊗ ξki�Mn(HR), �
�

k

�

i

aki ⊗ Aξki�Mn(KC)}.

By the basic properties of row and column spaces (listed at the end of the previous
section),

max
k

�

�

i

aki ⊗ ξki�Mn(HR) � �

�

k,i

aki ⊗ ξki�Mn(HR)

�
√

m max
k

�

�

i

aki ⊗ ξki�Mn(HR).

Furthermore, the vectors Aξki belong to the mutually orthogonal spaces Kk , hence

max
k

�

�

i

aki ⊗ Aξki�Mn(HC) � �

�

k,i

aki ⊗ Aξki�Mn(HC)

�
√

m max
k

�

�

i

aki ⊗ Aξki�Mn(HC).

Note that

�xk�Mn(X(Hk,Qk,QkAPk))

= max {�

�

i

aki ⊗ ξki�Mn(HR), �
�

i

aki ⊗ Aξki�Mn(HC)}.

Therefore,

max
k

�xk�Mn(X(Hk,Qk,QkAPk))

= max{max
k

�

�

i

aki ⊗ ξki�Mn(HR),max
k

�

�

i

aki ⊗ Aξki�Mn(HC)}

� �x�Mn(X(A))

�
√

m max{max
k

�

�

i

aki ⊗ ξki�Mn(HR),max
k

�

�

i

aki ⊗ Aξki�Mn(HC)}.

We complete the proof by noting that

�x�Mn(X(H1,K1,Q1AP1)⊕...⊕X(Hm,Km,QmAPm)) = max
1�k�m

�xk�Mn(X(Hk,Qk,QkAPk)).

Next, we establish our key tool for computing c.b. norms.
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Lemma 3.3 Suppose A and B are contractions, and T ∈ B(X(A),X(B)). Then

�T�cb = max {�T�, sup{�BTu�2 : u ∈ B(�2,X(A)), �Au�2 � 1, �u� � 1}}.

Proof By definition, �T�cb = max{�T�CB(X(A),R), �BT�CB(X(A),C)}. To estimate the
first term, note that id : X(A) → R is a complete contraction, hence

�T�CB(X(A),R) = �T ◦ id�CB(X(A),R) � �T�CB(R,R)�id�CB(X(A),R) = �T�.

However, �T� � �T�CB(X(A),R) , hence �T� = �T�CB(X(A),R) .

Next we estimate �BT�CB(X(A),C) . We know that

�BT�CB(X(A),C) = sup {�(IC ⊗ BT)(x)�C⊗C : x ∈ C ⊗ X(A), �x�C⊗X(A) � 1}.

Identifying elements of C ⊗ X(A) and C ⊗ C with operators from R to X(A) and C,
respectively, we see that

�BT�CB(X(A),C) = sup {�BTu�2 : u ∈ CB(R,X(A)), �u�cb � 1}.

But �u�cb = max{�u�CB(R), �Au�CB(R,C)} = max{�u�, �Au�2}.

Next we examine the exactness of X(A)∗ . Recall that an operator space X is called exact
if there exists c > 0 such that, for any finite dimensional subspace E of X , there exists
an operator u from E to a subspace F of Mn (n ∈ N), such that �u�cb�u−1�cb < c.
The infimum of all the c’s like this is called the exactness constant of X . It is easy to
see that R ⊕ C is 1-exact, hence so is X(A). The case of the dual is different.

Proposition 3.4 Suppose A ∈ B(H,K) is a contraction. Then the exactness constant
of X(A)∗ is at least 2−5/2�A�2 . In particular, X(A)∗ is not exact if A is not Hilbert-
Schmidt.

Proof Let c = 25/2ex(X(A)∗). By Corollary 0.7 of [23], there exist operators T1 :
X(A) → R, T2 : R → X(A), S1 : X(A) → C, and T2 : C → X(A), such that
id = S2S1 + T2T1 (id is the identity on X(A)), and

�S1�cb�S2�cb + �T1�cb�T2�cb � max{�S1�cb, �T1�cb}(�S2�cb + �T2�cb) � c

By Lemma 3.3, �T2�cb ≥ �AT2�2 , and a simple calculation yields

�S2�cb ≥ �S2�CB(C,R) = �S2�2 ≥ �AS2�2.

Therefore,

�S1�cb�S2�cb + �T1�cb�T2�cb ≥ �S1��AS2�2 + �T1��AT2�2

≥ �A(S2S1 + T2T1)�2 = �A�2,

which implies the desired estimate for c.
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Corollary 3.5 The space X(A) is completely isomorphic to R if and only if A is
Hilbert-Schmidt. Furthermore, the formal identity map id : R → X(A) is completely
contractive, and �id−1�cb = max{1, �A�2}.

Proof The estimates on the c.b. norm of id and id−1 follow from Lemma 3.3. Thus,

X(A)
max{1,�A�2}

� R whenever A is Hilbert-Schmidt. On the other hand, if A is not
Hilbert-Schmidt, then, by Proposition 3.4, X(A)∗ is not exact. However, R∗ = C is
exact, thus X(A) is not completely isomorphic to R.

We say that A ∈ B(H,K) (H and K are Hilbert spaces) is diagonalizable if the
eigenvectors of |A| = (A∗A)1/2 span H . Equivalently, there exist orthonormal systems
(ξi) and (ηi) in H and K , respectively, and a sequence (λi) of non-negative numbers,
such that A =

�
i λiξi ⊗ ηi .

When working with X(A), it is often convenient to have A diagonalizable. While every
compact operator is diagonalizable, a non-compact one need not have this property.
However, we have:

Lemma 3.6 Suppose H and K are separable Hilbert spaces, A ∈ B(H,K) is a
contraction, and ε > 0. Then there exists a diagonalizable contraction B ∈ B(H,K)
such that �A − B�2 � ε, and X(A) is (1 + ε)2 -completely isomorphic to X(B). If A is
non-negative, B can be selected to be non-negative, too.

Proof By Lemma 3.2(1), it suffices to consider the case of A = |A|, and H = K . By
[26], there exists a selfadjoint diagonalizable C ∈ B(H) such that �A − C�2 < ε/2.
Let (ci) be the eigenvalues of C , and (ξi) the corresponding norm 1 eigenvectors.
Define the operator B by setting Bξi = biξi , where

bi =






ci 0 � ci � 1
0 ci < 0
1 ci > 1

.

We claim that �B − C�2 < ε/2. Indeed, let I = {i : bi �= ci}. Then

�B − C�
2
2 =

�

i∈I
|bi − ci|

2 =
�

i:ci<0

|ci|
2 +

�

i:ci>1

|bi|
2.

But �ξi,Aξi� ∈ [0, 1], hence, for ci < 0, |�ξi,Aξi� − �ξi,Cξi�| ≥ |ci|. Similarly, for
ci > 1, |�ξi,Aξi� − �ξi,Cξi�| ≥ |1 − ci|. Thus,

ε2

4
> �A − C�

2
2 =

�

i,j

|�ξi, (A − C)ξj�|
2
≥

�

i

|�ξi, (A − C)ξi�|
2
≥

�

i∈I
|bi − ci|

2.
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Subspace structure of some operator and Banach spaces 11

By the triangle inequality, �A − B�2 < ε. Moreover, B is a non-negative contraction.

Denote the the formal identity map from X(A) to X(B) by U . It remains to show that
�U�cb, �U−1�cb � 1 + ε. As U is an isometry, Lemma 3.3 implies

(3–1) �U�cb = sup{�Bu�2 : u ∈ B(�2,X(A)), �Au�2 � 1, �u� � 1}.

By the triangle inequality,

�Bu�2 � �Au�2 + �(B − A)u�2 � �Au�2 + �B − A�2 � 1 + ε,

hence (3–1) yields �U�cb � 1 + ε. �U−1�cb is estimated similarly.

Proposition 3.7 Suppose H and K are separable Hilbert spaces, B ∈ B(H,K) is a
contraction, and 0 ∈ σess(|B|). Then X(B) is 4

√
2-completely isomorphic to X(B)⊕R.

Proof We can assume B = |B|. By Lemma 3.6, there exists a non-negative diag-

onalizable contraction A such that A − B is Hilbert-Schmidt, and X(A)
21/4

� X(B).
As the essential spectrum is stable under compact perturbations, 0 ∈ σess(A). Write
A = diag (α), where α = (αi)i∈I , and diag (α) ∈ B(�2) is the diagonal operator
with α,α2, . . . on the main diagonal. Then 0 is a cluster point of the set (αi). De-
note the norm 1 eigenvectors, corresponding to αi , by ξi . Find I0 ⊂ I such that�

i∈I0
α2

i < 1. Let I1 = I\I0 , and let P0 and P1 be the orthogonal projections onto
H0 = span[ξi : i ∈ I0] and H1 = span[ξi : i ∈ I1], respectively. By Lemma 3.2,
X(A) is

√
2-completely isomorphic to X(H0,H0,P0AP0) ⊕ X(H1,H1,P1AP1). By

Corollary 3.5, X(H0,H0,P0AP0) is completely isometric to R. Thus,

X(A)
√

2
� X(H0,H0,P0AP0) ⊕ X(H1,H1,P1AP1)

√
2

� R ⊕ X(H1,H1,P1AP1)
√

2
� R ⊕ R ⊕ X(H1,H1,P1AP1)

= R ⊕ X(H0,H0,P0AP0) ⊕ X(H1,H1,P1AP1)
√

2
� R ⊕ X(A).

To summarize, X(A)
4
� X(A) ⊕ R. As X(A)

21/4

� X(B), we are done.

Corollary 3.8 Suppose H and K are separable infinite dimensional Hilbert spaces,
and a contraction A ∈ B(H,K) satisfies 0 ∈ σess(|A|). Consider the operator Ã = A⊕0

from H̃ = H ⊕2 �2 to K̃ = K ⊕2 �2 . Then X(A)
8
� X(Ã).

Proof Let P be the orthogonal projection from H̃ onto H . onto H . By Lemma 3.2(2)

and Corollary 3.5, X(Ã)
√

2
� X(A) ⊕ R. However, by Proposition 3.7, X(A)

4
√

2
�

X(A) ⊕ R.
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12 Timur Oikhberg and Christian Rosendal

4 Classification of subspaces using sequences

In this section, we study the spaces X(A) when A is compact, and establish a connection
between such spaces and a certain family of sequences. We denote by C the space of
compact contractions A ∈ B(�2), which are not Hilbert-Schmidt. We denote by F the
set of all spaces X(A), with A ∈ C.

Start by defining the canonical basis in X(A), where A ∈ B(H,K) is a compact
contraction. As X(A) = X(|A|), we assume henceforth that A = |A|, and H = K . Let
(ξi)i∈I1 be the normalized eigenvectors of A, corresponding to the positive eigenvalues
of A. Furthermore, set H� = ker A, and let (ξi)i∈I0 be an orthonormal basis in H� (we
assume that I1∩ I0 = ∅). Let I = I0∪ I1 . The vectors ei = ξi⊕Aξi ∈ HR⊕HC (i ∈ I )
span X(A). Moreover, �ei� = 1 for each i, and, for any finite sequence (ai) ⊂ Mn ,

(4–1) �

�

i

ai ⊗ ei�
2
Mn(X(A)) = max

�
�

�

i

aia∗i �, �
�

i

�Aξi�
2a∗i ai�

�
.

We say that the vectors ei = ei[A] form the canonical basis of X(A).

Now suppose (αi)i∈N is a sequence of numbers in [0, 1]. In an effort to link oper-
ator spaces with certain sequences of scalars, we define the operator space Xd(α) =
X(diag (α)). To describe the operator space structure of Xd(α), denote by (ξi) the
canonical orthonormal basis of �2 . Then the vectors ei(α) = ei = ξi ⊕αiξi ∈ HR ⊕KC
form a 1-completely unconditional orthonormal basis in Xd(α), with

(4–2) �

�

i

ai ⊗ ei�
2 = max{�

�

i

aia∗i �, �
�

i

α2
i a∗i ai�}

for any finite sequence of matrices (ai). We call (ei(α))i∈N the canonical basis of
Xd(α). The formal identity from Xd(α) to Xd(β) is the linear operator mapping ei(α)
to ei(β).

If α = (αi)n
i=1 is a finite sequence, we define the finite dimensional space Xd(α) in the

same way.

To reduce ourselves to working with the spaces Xd(α) (and hence to sequences of
scalars), define, for a compact A ∈ B(H,K), the sequence α = D(A): if A has rank
n < ∞, let α1 ≥ . . . ≥ αn > 0 be the non-zero singular values of A, and set αi = 0
for i > n. If the rank of A is infinite, let (αi) be the singular values of A, listed in the
non-increasing order. We have:

Proposition 4.1 If H and K are separable infinite dimensional Hilbert spaces, and
A ∈ B(H,K) is a compact contraction, then X(A) is 26 -completely isomorphic to
Xd(D(A)).

Journal of Logic & Analysis 3:2 (2011)



Subspace structure of some operator and Banach spaces 13

Proof Let α = (αi) = D(A). By Lemma 3.2(1), we can assume that A = |A| =
(A∗A)1/2 , and H = K . If A has finite rank, (4–1) shows that X(A) is completely
isometric to Xd(α). Otherwise, write A =

�
i αiξi ⊗ ξi , for some orthonormal system

(ξi)∞i=1 in H . Let P be the orthogonal projection onto K = span[ξi : i ∈ N]. Set
Q = I − P, and L = Q(H). By Lemma 3.2(2), X(A) is

√
2-completely isomorphic

to X(K,K,PAP)⊕X(L, L,QAQ). Furthermore, QAQ = 0, hence X(L, L,QAQ) = LR .
It is easy to see that X(K,K,PAP) = Xd(α). By Proposition 3.7, the latter space is
4
√

2-completely isomorphic to Xd(α) ⊕ R. Thus,

X(A)
√

2
� X(K,K,PAP) ⊕ X(L, L,QAQ)

4
√

2
� Xd(α) ⊕ R ⊕ LR

√
2

� Xd(α) ⊕ (�2 ⊕ L)R = Xd(α) ⊕ R 4
√

2
� Xd(α).

We will also use a related observation.

Lemma 4.2 For every compact contraction A ∈ B(�2), and every ε > 0, there exists
α ∈ c0 such that X(A)

1+ε
� Xd(α).

Proof Indeed, let β = D(A). If A is finite rank, then X(A) is completely isometric
to Xd(β). If rank A = ∞, assume (by Lemma 3.2) that A = |A|. Then β1 ≥ β2 ≥

. . . > 0 is the list of all positive eigenvalues of A. Denote the corresponding norm 1
eigenvectors by ξi . Let H = span[ξi : i ∈ N], and K = ker A. Clearly, K and H are
mutually orthogonal subspaces of �2 . Let (ηj)j∈J be the orthogonal basis of K . Find a
sequence (γj)j∈J of positive numbers, satisfying

�
j∈J γ

2
i < ε2 . Consider the compact

contraction Ã ∈ B(�2), defined by Ãξi = βiξi , and Ãηj = γjηj . Then �A − Ã�2 < ε.
By (4–1), the formal identity map id : X(Ã) → X(A) is a complete contraction, and
�id−1�cb < 1 + ε. We complete the proof by identifying X(Ã) with the space Xd(α),
where the sequence α = (αi) is the “join” of the sequences β and γ (that is, any
number c ∈ [0, 1] occurs in α as many times as it occurs in the sequences β and γ
combined).

Now denote by S the set of all sequences (αi)i∈N satisfying 1 ≥ α1 ≥ α2 ≥ . . . ≥ 0,
and limi αi = 0. The rest of this section is devoted to the spaces Xd(α) (α ∈ S ).
We translate the relations between sequences α,β ∈ S to relations between the
corresponding spaces Xd(α) and Xd(β). We say that the sequence α dominates β
(α � β ) if there exists a set S ⊂ N) and K > 0 s.t.

�
i∈S β

2
i < ∞, and Kαi ≥ βi for

any i /∈ S . We say α is equivalent to β (α ∼ β ) if α � β , and β � α .

Clearly, the relation � is reflexive and transitive. The relation ∼ is, in addition to this,
symmetric. For instance, to establish the transitivity of �, suppose α � β , and β � γ ,
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14 Timur Oikhberg and Christian Rosendal

and show that α � γ . Note that there exist sets S1 and S2 , and constants K1 and K2 ,
s.t. βi � K1αi for i /∈ S1 , γi � K2βi for i /∈ S2 ,

�
i∈S1

β2
i < ∞, and

�
i∈S2

γ2
i < ∞.

Let S = S1 ∪ S2 , and K = K1K2 . Then γi � Kαi for i /∈ S . Moreover,
�

i∈S

γ2
i =

�

i∈S2

γ2
i +

�

i∈S1\S2

γ2
i �

�

i∈S2

γ2
i +

�

i∈S1

K2
2β

2
i < ∞,

which is what we need. The other properties are proved in a similar fashion.

Proposition 4.3 For α,β ∈ S , α ∼ β if and only if there exists a set S ⊂ N and a
constant K s.t.

�
i∈S(α2

i + β2
i ) < ∞, and K−1αi � βi � Kαi for i /∈ S .

Proof If S and K with the properties described above exist, then they witness the fact
that α ≺ β and α � β , hence α ∼ β . Conversely, suppose α ≺ β and α � β . Then
there exist a constant K , and sets S1 and S2 , s.t. αi � Kβi for i /∈ S1 , βi � Kαi

for i /∈ S2 ,
�

i∈S1
α2

i < ∞, and
�

i∈S2
β2

i < ∞. By reducing S1 and S2 further,
we can assume that αi > Kβi for each i ∈ S1 , and βi > Kαi for each i ∈ S2 .
Then

�
i∈S1

β2
i < ∞, and

�
i∈S2

α2
i < ∞. Therefore, S = S1 ∪ S2 has the required

properties.

The main result of this section is:

Theorem 4.4 For α,β ∈ S , Xd(α) embeds completely isomorphically into Xd(β) if
and only if α ≺ β .

From this we immediately obtain

Corollary 4.5 Suppose α,β ∈ S . The following three statements are equivalent.

(1) Xd(α) is completely isomorphic to Xd(β).

(2) Xd(α) embeds completely isomorphically into Xd(β), and vice versa.

(3) α ∼ β .

Proof (1) ⇒ (2) is trivial, while (2) ⇒ (3) follows from Theorem 4.4 and Proposi-
tion 4.3. To establish (3) ⇒ (1), suppose α ∼ β . By Proposition 4.3, there exists a
set I and K > 0 s.t.

�
i∈I(α2

i + β2
i ) < ∞, and K−1αi � βi � Kαi for any i /∈ I .

By Corollary 3.5, the spaces Eα = span[ei : i ∈ I] �→ Xd(α) and Eβ = span[ei : i ∈
I] �→ Xd(β) are completely isomorphic to R. By (4–2), the formal identity map from
Fα = span[ei : i /∈ I] �→ Xd(α) to Fβ = span[ei : i /∈ I] �→ Xd(β) is a complete
isomorphism. By Lemma 3.2(2), Xd(α) � Eα⊕Fα , and Xd(β) � Eβ⊕Fβ . Therefore,
the formal identity map from Xd(α) to Xd(β) is a complete isomorphism.
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Subspace structure of some operator and Banach spaces 15

The proof of Theorem 4.4 follows from the next two lemmas.

Lemma 4.6 If α,β ∈ S and β ≺ α , then Xd(β) embeds completely isomorphically
into Xd(α).

Proof By Corollary 3.8, Xd(α) is completely isomorphic to X(A), where A ∈ B(�2⊕2
�2) is defined by A = diag (α) ⊕ 0. Let (ξi) and (ξ�i) be orthonormal bases in the
first and second copies of �2 , respectively. Then X(A) is the closed linear span of the
vectors ξi⊕αiξi and ξ�i ⊕0 (i ∈ N). Find a sequence φi ∈ [0,π/2] s.t. βi = cosφi ·αi .
Define an orthonormal system ηi = cosφiξi + sinφiξ�i . For i ∈ N consider

fi = ηi ⊕ βiξi = cosφi(ξi ⊕ αiξi) + sinφi(ξ�i ⊕ 0).

Then fi ∈ X(A), and span[fi : i ∈ N] = Xd(β).

Lemma 4.7 Suppose α,β ∈ S , E is a subspace of Xd(α), and a completely bounded
map U : E → Xd(β) has bounded inverse (in the terminology of [18], E is completely
semi-isomorphic to Xd(β)). Then β ≺ α .

Proof We rely heavily on Wielandt’s Minimax Theorem ([2, Theorem III.6.5]): if
c1 ≥ c2 ≥ . . . ≥ 0 are eigenvalues of positive compact operator T , then, for any finite
increasing sequence i1 < . . . < ik of positive integers,

k�

j=1

cij = sup
E1�→...�→Ek

min
xj∈Ej, (xj) orthonormal

�Txj, xj�,

where the supremum is taken over all subspaces E1 �→ . . . �→ Ek of the domain of T ,
with dim Ej = ij for 1 � j � k . Actually, the theorem is stated in [2] for operators on
finite dimensional spaces, but a generalization to compact operators is easy to obtain.
Applying the above identity to T = S∗S , where S is a compact operator with singular
numbers s1 ≥ s2 ≥ . . . ≥ 0, we obtain:

(4–3)
k�

j=1

s2
ij = sup

E1�→...�→Ek,dim Ej=ij
min

xj∈Ej, (xj) orthonormal
�Sxj�

2.

In our situation, assume �U�cb = 1. Let c = �U−1�, A = diag (αi), B = diag (βi),
B� = BU . Denote the singular values of B� by (β�

i ). Clearly, β�
i � βi � cβ�

i for every
i ∈ N.
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16 Timur Oikhberg and Christian Rosendal

Pick an orthonormal system (xj)k
j=1 in E (the domain of U ). Let u be the formal

identity from Rk = (�k
2)R (the k-dimensional row space) to span[xj : 1 � j � k]. Then

(compare with the proof of Lemma 3.3)

�u�2
cb = max{1, �Au�2

2} � 1 +
k�

j=1

�Axj�
2,

and (since U is a complete contraction)

�u�2
cb ≥ �Uu�2

cb ≥ �BUu�2
2 =

k�

j=1

�B�xj�
2.

Thus,
�k

j=1 �B�xj�
2 � �k

j=1 �Axj�
2 +1 for any orthonormal family (xj)k

j=1 . By (4–3),

(4–4) 1 +
k�

j=1

α2
ij ≥

k�

j=1

β�2
ij

for any i1 < . . . < ik (indeed, when computing
�k

j=1 α
2
ij , we are taking the supremum

over a larger family of subspaces (Ej), than when we are computing
�k

j=1 β
�2
ij ).

Now let I = {i ∈ N : β�
i > 2αi}. Then

�
i∈I β

�2
i � 2. Indeed, otherwise there exists

a sequence i1 < . . . < ik of elements of I s.t. C =
�k

j=1 β
�2
ij > 2. Then, by (4–4),

�k
j=1 α

2
ij ≥ C − 1. On the other hand,

�k
j=1 α

2
ij � C/2, a contradiction.

Developing the ideas of this proof, we obtain:

Theorem 4.8 Suppose α,β ∈ S , and there exists an isomorphism U : Xd(α) →

Xd(β) with �U�cb, �U−1�cb � C . Then the formal identity map id : Xd(α) → Xd(β)
satisfies �id�cb, �id−1�cb < 4C2 .

Proof As in the proof of Lemma 4.7, let A = diag (αi), B = diag (βi), and B� = BU .
By Lemma 3.3, �B�u�2 � C max{�Au�2, �u�} for any u : �2 → Xd(α). Denote the
singular numbers of B� by (β�

i ), and note that βi/C � β�
i � Cβi for every i. Reasoning

as in the proof of Lemma 4.7, we see that

C2(1 +
k�

j=1

α2
ij) ≥

k�

j=1

β�2
ij

Let I = {i : β�
i > 2Cαi}. As in the preceding proof,

�
i∈I β

�2
i < 2C2 . Therefore,�

i∈I β
2
i < 2C4 , and βi � 2C2αi for i /∈ I .
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Subspace structure of some operator and Banach spaces 17

Next we show that �id : Xd(α) → Xd(β)�cb < 4C2 . As before, denote the canonical
bases in Xd(α) and Xd(β) by (ei(α))i∈N and (ei(β))i∈N , respectively. By (4–2),
Y1 = span[ei(α) : i ∈ I] and Y0 = span[ei(α) : i /∈ I] are completely contractively
complemented subspaces of Xd(α). Moreover,

�id|Y1�cb � �V : (Y1)R → Xd(β)�cb = max{1, �BV�cb}

� max {1,
��

i∈I
β2

i
�1/2

} < 2C2

(here, V is the formal identity from (Y1)R to span[ei(β) : i ∈ I]). By Lemma 3.3 and
(4–2), �id|Y0�cb < 2C2 . Therefore,

�id : Xd(α) → Xd(β)�cb � �id|Y1�cb + �id|Y0�cb < 4C2.

The norm of id : Xd(β) → Xd(α) is computed the same way.

5 Completely unconditional bases

In this section, we further investigate bases in spaces X(A), where A ∈ B(H,K) is
a compact contraction. A subspace E of X(A) is isometric to X(A|E). As A|E is
a compact contraction, (4–1) implies that E has a 1-completely unconditional basis.
The key result of this section is Proposition 5.2, establishing the uniqueness of a
completely unconditional basis in E (the existence of such a basis has been established
by Proposition 4.1). We also show that the canonical basis (and therefore, every
completely unconditional basis) in a completely complemented subspace of Xd(α) is
equivalent to a subsequence of the canonical basis of Xd(α). Moreover, there exists
α ∈ S such that the canonical basis in every complemented subspace of Xd(α) is
equivalent to a subsequence of the canonical basis of Xd(α) (Theorem 5.6). In general,
the last statement need not be true (Remark 5.5).

First we show that any completely unconditional basic sequence in an X(A) space
corresponds to a canonical basis of Xd(β), for some β .

Proposition 5.1 Suppose I is a finite or countable set, and (e�i)i∈I is a a C-completely
unconditional basic sequence in X(A) (A ∈ B(�2) is a contraction, not necessarily
compact). Let Y = span[e�i : i ∈ I], and define the sequence β = (βi) by setting
βi = �Ae�i�. Consider the operator T : Y → Xd(β) : e�i �→ ei , where (ei) is the
canonical basis of Xd(β). Then �T�cb � C and �T−1�cb � C2 .
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18 Timur Oikhberg and Christian Rosendal

Proof As noted in Section 2,

(5–1) C−2
�

�
αie�i�

2 �
�

|αi|
2 � C2

�

�
αie�i�

2

for any finite sequence of scalars (αi). Thus, �T�, �T−1� � C .

Let B = diag (β) (note that B = B∗ ). By Lemma 3.3, it suffices to show that

(5–2) �BTu�2 � C max{�Au�2, �u�}

for any u : �2 → Y = X(A|Y ), and

(5–3) �AT−1u�2 � C2 max{�Bu�2, �u�}

for any u : �2 → Xd(β). By Lemma 3.3, the complete unconditionality of (e�i) implies:

(5–4)
�AΛu�2 � C max{�Au�2, �u�},
�Au�2 � C max{�AΛu�2, �u�}

whenever Λ = diag (λi) (that is, Λe�i = λie�i ), with λi = ±1 for each i, and u ∈

B(�2, Y). Note that �Au�2
2 = tr(A∗Av), where v = uu∗ . Therefore, (5–4) is equivalent

to

(5–5)
tr(Λ∗A∗AΛv) � C2 max{tr(A∗Av), 1},
tr(A∗Av) � C2 max{tr(Λ∗A∗AΛv), 1}

whenever v ≥ 0 and �v� = 1. But �Λ∗A∗AΛe�i, e�j� = λiλj�Ae�i,Ae�j�. Averaging
over λi = ±1 for each i, we see that AveΛΛ∗A∗AΛ = T∗B2T (since �T∗B2Te�i, e�j� =
δij�Ae�i,Ae�j�, where δij is Kronecker’s delta). Therefore, by (5–5),

tr(T∗B2Tv) = AveΛtr(Λ∗A∗AΛv)
� sup

Λ
tr(Λ∗A∗AΛv) � C2 max{tr(A∗Av), 1}

whenever v is a positive contraction. Thus, for any contraction u,

�BTu�2
2 = tr(T∗B2Tuu∗)
� C2 max{tr(A∗Auu∗), 1} = C2 max{�Au�2, �u�}2,

which proves (5–2).

To establish (5–3), we show that, for every w : �2 → Y , we have

(5–6) �Aw�2 � C max{�BTw�2, �w�}

Indeed, let w = T−1u. Then, by (5–6) and (5–1),

�AT−1u�2 = �Aw�2 � C max{�BTw�2, �w�}

� C max{�Bu�2,C�u�} � C2 max{�Bu�2, �u�}.
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Moreover, (5–6) is equivalent to the following: for any non-negative, norm one v ∈

B(Xd(α)), we have

(5–7) C2 max{tr(T∗B2Tv), 1} ≥ tr(A∗Av).

As we have established before, tr(T∗B2Tv) = AveΛtr(Λ∗A∗AΛv). By the linearity and
positivity of the trace,

0 � inf
Λ

tr(Λ∗A∗AΛv) � tr(T∗B2Tv) � sup
Λ

tr(Λ∗A∗AΛv).

Thus, for some Λ, tr(Λ∗A∗AΛv) � tr(T∗B2Tv). By (5–5),

tr(A∗Av) � C2 max{tr(Λ∗A∗AΛv), 1} � C2 max{tr(T∗B2Tv), 1},

which implies (5–7).

Proposition 5.2 For α ∈ c0 , the completely unconditional basis in Xd(α) is unique (up
to permutative equivalence). More precisely: if (gi) is a C-completely unconditional
basis in Xd(α), then it is 16C11 -equivalent (up to a permutation) to the canonical basis
in Xd(α).

Proof Let (ei(α)) be the canonical basis of Xd(α). Set βi = �Agi�, and let (ei(β)) the
canonical basis of Xd(β). By Proposition 5.1, the map T : Xd(α) → Xd(β) : gi �→ ei(β)
satisfies �T�cb � C , �T−1�cb � C2 . By Theorem 4.8, id : Xd(β) → Xd(α) satisfy
�id�cb, �id−1�cb < 4C4 . Thus, the operator U = id ◦ T is a complete isomorphism on
Xd(α), with Ugi = ei , �U�cb < 4C5 , and �U−1�cb < 4C6 .

Corollary 5.3 Suppose α ∈ S , and Y is a C-completely complemented subspace of
Xd(α). Then Y is 26C2 -completely isomorphic to Xd(α�), where α� is a subsequence
of α .

Proof Let P be a projection from Xd(α) onto Y , with �P�cb � C . Then Xd(α) is
2C-completely isomorphic to Y ⊕ Z , where Z = ker P. By Lemma 4.2, Y and Z
are

√
2-completely isomorphic to Xd(β) and Xd(β�), respectively, where β and β�

belong to S . By Lemma 3.2(2), Xd(α) is 4C-completely isomorphic to Xd(γ), where
γ = (γi) ∈ S is the “join” of β = (βi) and β� = (β�

i ). More precisely, the sequence γ
has the property that, for every c ∈ [0, 1],

|{i : γi = c}| = |{i : βi = c}|+ |{i : β�
i = c}|.

Denoting the canonical basis of Xd(γ) by (ei(γ)), we see that Xd(β) = span[ei(γ) :
i ∈ I], for some infinite set I ⊂ N. By Theorem 4.8, the formal identity id :
Xd(γ) → Xd(α) : ei(γ) �→ ei(α) satisfies �id�cb, �id−1�cb < 8C . In particular, Xd(β)
26C2 -completely isomorphic to span[ei(α) : i ∈ I].
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Remark 5.4 By [17], the completely unconditional basis in R ⊕ C is unique up to a
permutation.

Remark 5.5 In general, the canonical basis of a subspace of Xd(α) (α ∈ S ) need not
be equivalent to a subsequence of the canonical basis of Xd(α). For instance, suppose
the sequence α = (αi) and β = (βi) are defined by setting αi = 2−n2 , βi = 2−n2−n

for 4n2 � i < 4(n+1)2 (n ∈ {0} ∪ N). By Lemma 4.6, Xd(β) embeds completely
isomorphically into Xd(α). However, (ei(β)) (the canonical basis of Xd(β)) is not
equivalent to any subsequence of the canonical basis (ei(α)) of Xd(α). Indeed, suppose,
for the sake of achieving a contradiction, that there exists a complete isomorphism T
from Xd(β) to a subspace of Xd(α), mapping ei(β) to eki(α). Fix n ∈ N with
max{�T�cb, �T−1�cb} < 2n/2 . Consider the sets

In = {4n2 � i < 4(n+1)2 : ki < 4(n+1)2
},

Jn = {4n2 � i < 4(n+1)2 : ki ≥ 4(n+1)2
}.

By Pigeon-Hole Principle, with In or Jn has the cardinality grater than 4n2+2n . If
|In| > 4n2+2n , consider

x =
�

i∈In

Ei1 ⊗ ei(β) ∈ M4(n+1)2 (Xd(β))

(recall that Ei1 is the “matrix unit” with 1 on the intersection of the first column and
the i-th row, and zeroes everywhere else). By (4–2),

�x�2
M

4(n+1)2 (Xd(β)) = max{1, |In| · 2−n2−n
} = |In| · 2−n2−n.

However, by (4–2) again,

�(IM
4(n+1)2

⊗ T)x�2
M

4(n+1)2 (Xd(α)) ≥ max{1, |In| · 2−n2−n
} = |In| · 2−n2

,

yielding �T�2
cb ≥ 2−n . If Jn > 4n2+2n , consider

x =
�

i∈Jn

Ei1 ⊗ ei(β) ∈ M4(n+1)2 (Xd(β)).

As before, �x�2 = |Jn| · 2−n2−n , while

�(IM
4(n+1)2

⊗ T)x�2
M

4(n+1)2 (Xd(α)) ≥ max{1, |In| · 2−(n+1)2
} = |Jn| · 2−(n+1)2

,

hence �T−1�2
cb ≥ 2n+1 . Thus, max{�T�cb, �T−1�cb} ≥ 2n/2 , which yields the desired

contradiction.

In certain situations, the canonical basis for every subspace of Xd(α) is equivalent to a
subsequence of the canonical basis of Xd(α).
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Theorem 5.6 For any a > 1 there exists α ∈ S\�2 such that any subspace Y of Xd(α)
(finite or infinite dimensional) has a 1-completely unconditional basis, a-equivalent to
a subsequence of the canonical basis of Xd(α).

Combining this result with Proposition 5.2, we obtain

Corollary 5.7 There exists α ∈ S\�2 such that any C-completely unconditional basic
sequence in Xd(α) is ACB -equivalent to a subsequence of the canonical basis of Xd(α)
(here, A and B are positive).

Proof of Theorem 5.6 Assume a < 2. Pick a sequence of integers 1 = N0 < N1 <
. . ., s.t. Nk > 2Nk−1 for each k . Define a sequence α = (αi) by setting α2i = a−k

for Nk � i < Nk+1 , α2i−1 = 0 for any i ∈ N. Clearly, α ∈ c0\�2 . Let A = diag (α).
For a subspace Y of X(A), let β = (βi) is the sequence of singular values of A|Y .
Define the set I1 by setting I1 = {1, . . . ,M} if rank (A|Y ) = M < ∞, and I1 = N
if rank (A|Y ) = ∞. We can also assume that the elements of (βi)i∈I1 are listed in the
non-increasing order. Then βi � α2i for each i.

Denote the normalized eigenvectors of (A|Y )∗A|Y , corresponding to the eigenvalues βi

(i ∈ I1 ), by ηi . Furthermore, find the vectors (ηi)i∈I0 , forming an orthonormal basis
in ker (A|Y ). For i ∈ I0 , set βi = 0. Let I = I1 ∪ I0 (we assume that this union is
disjoint). Then the family (ηi)i∈I is the canonical basis for Y .

For each positive integer k , let Mk be the smallest value of i s.t. βi � a−k . Set
M0 = 1. In this notation, a1−k ≥ βi > a−k iff Mk−1 � i < Mk . As noted above,
βi � α2i , hence Mk � Nk . By our choice of the sequence (Nk),

Mk − Mk−1 < Mk � Nk � Nk+1 − Nk.

Thus, there exists an injective map π : I → N s.t. π(I0) ⊂ {2i − 1 : i ∈ N}, and
π([Mk−1,Mk)) ⊂ {2i : i ∈ [Nk,Nk+1)} for each k ∈ N. For i ∈ I0 , απ(i) = βi = 0,
while for i ∈ I1 , aαπ(i) = a1−k ≥ βi > a−k = απ(i) . Define the operator T : Y →

span[eπ(i) : i ∈ I] �→ Xd(α), defined by Tξi = eπ(i) . By (4–1), T is a complete
contraction, and �T−1�cb � a.

Remark 5.8 The proof of Theorem 5.6 shows that any subspace of Xd(α) is a-
completely isomorphic to a completely contractively complemented subspace of Xd(α).
Nevertheless, Xd(α) contains subspaces which are not completely complemented. To
construct them, find a sequence (βi) such that 1 ≥ β1 ≥ β2 ≥ . . . > 0, limβi = 0,
and furthermore,

�
i γ

2
i = ∞, where γi = αiβi . Denote the canonical basis of Xd(α)
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by (ei)i∈N . Then e2i−1 = ξ2i−1 ⊕ 0, and e2i = ξ2i ⊕αiξ2i ((ξj) is an orthonormal basis
in �2 ). For k ≥ 0 and i ∈ [Nk, nk+1), let

(5–8) fi = βie2i +
�

1 − β2
i e2i−1 =

�
βiξ2i +

�
1 − β2

i ξ2i−1
�
⊕ γiξ2i.

We show that Y is not completely complemented in Xd(α). Indeed, suppose, for
the sake of contradiction, that there exists a c.b. projection P from Xd(α) onto Y .
For ε ∈ {−1, 1}N , define an operator Λε ∈ B(Xd(α)) by setting λεej = ε�j/2�ej .
For any such ε, (4–2) implies that Λε is a complete isometry. For any i ∈ N,
we have Λεξ = εiξ whenever ξ ∈ span[e2i−1, e2i]. In particular, Λεfi = εifi . Let
Q = Aveε∈{−1,1}NΛεPΛε . Note that ran Q ⊂ Y , and Q|Y = IY , hence Q is a projection
onto Y . Furthermore, �Q�cb � �P�cb .

For each i, we have Qe2i = aifi , and Qe2i−1 = bifi . The equations Qfi = fi and (5–8)
yield aiβi + bi

�
1 − β2

i = 1. Then supi max{|ai|, |bi|} � �Q�. As limβi = 0, there
exists K ∈ N such that |bi| > 1/2 for i > K . Find N ∈ N s.t.

�K+N
i=K+1 γ

2
i > 4�Q�2

cb
(this is possible, since

�
i γ

2
i = ∞). Consider x =

�K+N
i=K+1 Ei1 ⊗ e2i−1 ∈ MN(Xd(α)).

Then �x� = 1, and therefore,

�Q�cb ≥ �(IMN ⊗ Q)x� = �

K+N�

i=K+1

Ei1 ⊗ bifi�

≥ �

K+N�

i=K+1

Ei1 ⊗ biγiξ2i�MN (C) =
� K+N�

i=K+1

|bi|
2γ2

i

�1/2

≥

��K+N
i=K+1 γ

2
i

�1/2

2
> �Q�cb,

which is impossible.

Remark 5.9 If any subspace of a Banach space E is complemented, then E is
isomorphic to a Hilbert space. This was first proved in [14], see also [10] for sharper
asymptotics of the isomorphism constants. A recent preprint [9] exhibits a class of
separable Banach spaces E , not isomorphic to �2 , such that every subspace of E is
isomorphic to a complemented subspace of E . It is not known whether E can be
constructed in such a way that all of its subspaces have an unconditional basis.

6 Completely isomorphic classification of subspaces of X(A)

The main goal of this section is to prove Theorem 6.1 and Corollary 6.2 below. Recall
that C is the set of compact contractions which are not Hilbert-Schmidt.
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Theorem 6.1 If A ∈ B(�2) belongs to C, then (S(X(A)),�) is Borel bireducible to
the complete Kσ relation.

Together with Corollary 4.5, this theorem immediately implies

Corollary 6.2 If A ∈ B(�2) belongs to C, then the relation of complete biembed-
dability on S(X(A)) is Borel bireducible to the complete Kσ relation.

The proof of Theorem 6.1 proceeds in two steps. First, we introduce the space SA of
sequences of non-negative generalized integers, with an equivalence relation ∗

∼, and
show the latter is Borel bireducible with (S(X(A)),�). Then we prove that (SA,

∗
∼) is,

in fact, a complete Kσ relation.

Suppose A ∈ B(�2) is of class C. By Lemma 3.2, we can assume that �A� < 1, and
A ≥ 0. List the positive eigenvalues of A in the non-increasing order: 1 > �A� =
so

1 ≥ so
2 ≥ . . . > 0. In the terminology of Section 4, (so

i )i∈N = D(A). Clearly,
limi so

i = 0. Let (ξi)i∈N be the normalized eigenvectors of A, corresponding to the
eigenvalues so

i . We can identify span[ξi : i ∈ N] with �2 . Consider the operator
Â = diag (so

i ) ⊕ 0 ∈ B(�2 ⊕ �2). By Corollary 3.8, X(A) � X(Â). For the rest of this
section, we assume that A = Â.

Denote by (ξ�i)i∈N the canonical orthonormal basis in the second copy of �2 . Then the
canonical basis of X(A) is the collection of vectors ei = ξi ⊕ so

i ξi and fi = ξ�i ⊕ 0. As
in (4–1), we have, for n × n matrices a1, b1, a2, b2, . . .,

(6–1)

�

�

i

ai ⊗ ei +
�

i

bi ⊗ fi�2
Mn(X(A))

= max {�
�

i

aia∗i +
�

i

bib∗i �, �
�

i

so2
i a∗i ai�}.

For an infinite dimensional Y �→ X(A), we let (si(Y)) = D(A|Y ). Recalling the
definition of D from Section 4, we see that, if rank (A|Y ) = ∞, then s1(Y) ≥ s2(Y) ≥
. . . are the positive singular values of A|Y , listed in the non-increasing order. In the
case of rank (A|Y ) = n < ∞, s1(Y) ≥ s2(Y) ≥ . . . ≥ sn(Y) are the n positive singular
values of A|Y , and si(Y) = 0 for i > n. In this notation, so

k = sk(X(A)). Clearly,
sk(Y) � so

k for any k , and any Y �→ X(A).

For k ∈ N, set nk(Y) = sup{� ∈ N : 21−� ≥ sk(Y)}. The sequence n(Y) = (nk(Y))k∈N
belongs to NN

∗ , where N∗ = N∪ {∞} is viewed as the 1-point compactification of N.
For k ∈ N let αk = nk(X(A)). Define SA as the set of all elements β = (βi)i∈N ∈ NN

∗ ,
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such that (1) βk ≥ αk for any k , and (2) β1 � β2 � . . .. Equipping NN
∗ with its

product topology, we see that SA is closed.

For any infinite dimensional Y �→ X(A), the sequence (nk(Y))k∈N belongs to SA .
Conversely, for any β ∈ SA there exists Y �→ X(A) s.t. β = n(Y). Indeed, suppose
βk ∈ N∗ , βk ≥ αk for any k , and β1 � β2 � . . .. Let gi = sinφiei + cosφifi , with
so

i sinφi = 2−βi . We denote span[gi : i ∈ N] by Y(β), where β = (βi). By (6–1),
n(Y(β)) = β .

Define the relation ∗
∼ on SA as follows: β

∗
∼ γ if there exists K ∈ N and I ⊂ N s.t.

|βi − γi| � K for any i /∈ I , and
�

i∈I(4
−βi + 4−γi) � K . By Corollary 4.5, β ∗

∼ γ iff
Y(β) � Y(γ), and conversely, Y � Z iff n(Y) ∗

∼ n(Z).

Proposition 6.3 n and Y are Borel maps.

This immediately yields:

Corollary 6.4 (SA,
∗
∼) and (S(X(A)),�) are Borel bireducible to each other.

Proof of Proposition 6.3 First we handle the map Y. We have to show that, for any
open set U ⊂ X(A), {β ∈ SA : Y(β) ∩ U �= ∅} is Borel. But Y(β) ∩ U �= ∅ iff
there exist m ∈ N and λ1, . . . ,λm ∈ Q + iQ s.t.

�m
i=1 λigi ∈ U . Here, the vectors

(gi) come from the definition of Y. Note that, for each i, gi depends solely (and
continuously) on βi . Therefore, for each m-tuple (λi)m

i=1 ,
�m

i=1 λigi ∈ U is an open
condition on β . Thus, {β ∈ SA : Y(β) ∩ U �= ∅} is Borel.

Now consider n. Fix m,βm ∈ N, and show that the set of all Y ∈ S(X(A)), for which
nm(Y) > βm ∈ N, is Borel. To this end, find a countable set Om of orthonormal
m-tuples ξ = (ξ1, . . . , ξm) in X(A), with the property that, for every ε > 0, and any
orthonormal m-tuple (η1, . . . , ηm) in X(A), there exists ξ = (ξ1, . . . , ξm) ∈ Om s.t.
�ξi−ηi� < ε for any i. Furthermore, find a set Γm of m-tuples γ = (γ1, . . . , γm) ∈ Cm ,
dense in the unit sphere of �m

2 .

The Minimax Principle (see e.g. [2, p. 75]) states that, for an operator T ∈ B(H,K),
we have sm(T) > b iff H has an m-dimensional subspace E such that �Tη� > b
for any norm one η ∈ E . Therefore, nm(Y) > βm ∈ N (that is, sm(A|Y ) ≥ 2−βm )
iff for every ε > 0 there exists an m-tuple of orthonormal vectors η1, . . . , ηm ∈ Y ,
s.t. �

�m
i=1 γiAηi� > 2−βm − ε whenever

�m
i=1 |γi|

2 = 1. This, in turn, is equivalent
to the following statement: for every r ∈ N, there exists (ξ1, . . . , ξm) ∈ Om s.t., for
1 � i � m, Ba(ξi, 1/r) ∩ Y �= ∅ (here, Ba(x, c) denotes the open ball of radius c, with
the center at x), and �

�
i γ

iAξi� > 2−βm −1/r for every (γi)m
i=1 ∈ Γm . This condition

is Borel, hence n is Borel.
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Lemma 6.5 (SA,
∗
∼) is a Kσ relation.

Proof We have to show that the set F = {(β, γ) ∈ SA × SA : β ∗
∼ γ} is a Kσ set,

that is, a countable union of compact sets. To this end, define a family of subsets of
SA × SA , described below. For K, n ∈ N and In ⊂ {1, . . . , n}, define F(K, n, In) as
the set of all pairs (β, γ) (β = (βi), γ = (γi)) with the property that |βi − γi| � K for
i ∈ {1, . . . , n}\In , and

�
i∈In

(4−βi +4−γi) � K . Let F(K, n) = ∪In⊂{1,...,n}F(K, n, In),
and F(K) = ∩nF(K, n). It suffices to show that F = ∪K∈NF(K). Indeed, F(K, n, In)
is a compact subset of SA × SA , hence so is F(K, n) (as a finite union of compact sets).
Furthermore, F(K) is also compact, and ∪KF(K) is Kσ .

We show first that F ⊂ ∪KF(K). By definition, β ∗
∼ γ if there exists K ∈ N and

I ⊂ N s.t. |βi − γi| � K for any i /∈ I , and
�

i∈I(4
−βi + 4−γi) � K . Letting

In = I ∩ {1, . . . , n}, we see that (β, γ) ∈ F(K, n, In) for each n, hence (β, γ) ∈ F(K).

To prove the converse implication, suppose (β, γ) ∈ F(K) for some K , and show that
β

∗
∼ γ . Construct a tree T ⊂ {0, 1}N : for each n, T ∩ {0, 1}n consists of all the sets

In s.t. |βi − γi| � K for i /∈ In , and
�

i∈In
(4−βi + 4−γi) � K (we identify the set

of subsets of {1, . . . , n} with {0, 1}n ). The set T is indeed a tree: if In ∈ T , then
In ∩ {1 . . . ,m} ∈ T for m < n. By assumption, T has arbitrarily long branches. By
König’s Lemma [11, p. 20], T has an infinite branch, which yields a set I ⊂ N s.t.
|βi − γi| � K for i /∈ I , and

�
i∈I(4

−βi + 4−γi) � K .

Next consider a space Ξ =
�

k∈N Ξk , where Ξk = {0, . . . , k−1}, with the equivalence
relation cEKσb iff supi |ci −bi| < ∞ (here, c = (ci)i∈N , b = (bi)i∈N ). By [24], EKσ is
a complete Kσ relation, hence, by Lemma 6.5, it reduces (SA,

∗
∼). It remains to prove

the converse.

Proposition 6.6 There exists a Borel map φ : Ξ → SA s.t. φ(b) ∗
∼ φ(c) iff cEKσb.

Proof Recall that A is a compact contraction which is not Hilbert-Schmidt. Therefore,�
i 4−αi = ∞, and limi αi = ∞. Thus, there exists a sequence of positive integers

1 = p0 < q1 < p2 < q2 < . . . s.t.
�

i∈Ik
4−αi > 42k (Ik = [pk, qk − 1)), and

αpk+1 > k + qk . Define φ((bi)) = (b�j) by setting b�j = αj + bk if j ∈ Ik , and
b�j = min{αj + k,αpk+1} if qk � j < pk+1 . Clearly, φ is a Borel map. Moreover, if
cEKσb, then φ(b) ∗

∼ φ(c). Suppose, on the contrary, that b� ∗
∼ c� , where b� = φ(b) and

c� = φ(c). Then there exists a set I ⊂ N and K ∈ N s.t. |b�j − c�j| � K for j /∈ I , and
�

j∈I(4
−b�j + 4−c�j ) � K . We shall show that |bk − ck| � K for all but finitely many
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k’s. Indeed, otherwise there exist infinitely many k’s s.t. Ik ⊂ I (this follows from the
fact that b�j − c�j = bk − ck for j ∈ Ik ). But

�

j∈Ik

(4−b�j + 4−c�j ) ≥ 2 · 4−k
�

j∈Ik

4−α�
j > 1,

hence �

j∈I

(4−b�j + 4−c�j ) ≥
�

Ik⊂I

�

j∈Ik

(4−b�j + 4−c�j ) = ∞,

a contradiction.

Conclusion of the proof of Theorem 6.1 By Corollary 6.4, (S(X(A)),�) and (SA,
∗
∼)

are Borel bireducible to each other. By Lemmas 6.5 and 6.6, (SA,
∗
∼) is Borel bireducible

to a complete Kσ relation.

Remark 6.7 For many separable Banach spaces X , it is known that the isomorphism
relation on S(X) reduces certain “classical” relations, such as EKσ (see e.g. [1, 4, 5, 6]).

7 Proofs of Theorems 1.1, 1.2, and 1.3

Recall that the class C consists of all compact contractions, which are not Hilbert-
Schmidt, and the family F is the set of all operator spaces X(A), where A ∈ B(�2)
belongs to C. Clearly, all these spaces are isometric to �2 .

Proof of Theorem 1.1 Suppose X(A) ∈ F. By Theorem 6.1 and Corollary 6.2,
the relations of complete isomorphism and complete biembeddability on S(X(A)) are
complete Kσ . To show that F contains a continuum of spaces, not completely iso-
morphic to each other, pick A ∈ B(�2) ∩ C. Consider a space Ξ =

�
k∈N Ξk , where

Ξk = {0, . . . , k − 1}, with the equivalence relation cEKσb iff supi |ci − bi| < ∞

(here, c = (ci)i∈N , b = (bi)i∈N ). By the results of Section 6, there exists a Borel
map Φ : Ξ → S(X(A)), such that Φ(b) � Φ(c) iff bEKσc. It remains to find a family
(bε)ε∈{0,1}N ⊂ Ξ, such that bεEKσbδ iff ε = δ . To this end, write N as a disjoint union
of infinite sets Ik (k ∈ N). For any ε = (εk)∞k=1 , define

bε(i) =
�

0 i ∈ Ik, ε(k) = 0
i − 1 i ∈ Ik, ε(k) = 1

.

Clearly, this family (bε) has the desired properties.
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Proof of Theorem 1.2 Consider A ∈ B(�2) of class C. The existence of the canonical
basis has been established at the beginning of Section 4, while its uniqueness follows
from Proposition 5.2.

Proof of Theorem 1.3 Combine Theorem 1.2 with Theorem 5.6 and Corollary 5.7.

8 Isometric classification: proof of Theorem 1.4

We handle the real case. Begin by introducing a numerical invariant of subspaces of
X = R ⊕1 �2 . Denote by P the “natural” projection onto R. For Y ∈ S(X), define
c(Y) = �P|Y�.

Lemma 8.1 For Y ∈ S(X), there exists x ∈ Y such that �x� = 1, and �Px� = c(Y).
Moreover, if this x is written as x = c(Y) ⊕ (1 − c(Y))ξ0 , then Y = span[x, Y �], where
Y � = {0 ⊕ ξ : ξ ∈ (Y ∩ �2) ∩ ξ⊥0 }.

Proof If c(Y) = 0, the statement is trivial. Suppose c(Y) = 1. Then, for every n ∈ N,
there exists tn ∈ (1 − 1/n, 1] and ξn ∈ �2 s.t. �ξn� = 1, and tn ⊕ (1 − tn)ξn ∈ X . As
Y is closed, 1 ⊕ 0 ∈ Y .

Next consider c(Y) ∈ (0, 1). Suppose, for the sake of contradiction, that there is no x as
in the statement of the lemma. Then for every n ∈ N there exist tn ∈ (c(Y)−1/n, c(Y)),
and ξn ∈ �2 s.t. �ξn� = 1, and tn ⊕ (1 − tn)ξn ∈ Y . Passing to a subsequence if
necessary, we can assume that (ξn) is a Cauchy sequence in �2 . Indeed, otherwise
there exist n1 < n2 < . . . and α > 0, such that, for any i, �ξni+1 − ξni� > α .
By the uniform convexity of Hilbert spaces (which follows, for instance, from the
parallelogram identity), there exists β > 0 s.t. �(1 − tni+1 )ξni+1 + (1 − tni)ξni�/2 <
1 − c(Y) − β for any i. Define

yi =
tni+1 + tni

2
⊕

(1 − tni+1 )ξni+1 + (1 − tni)ξni

2
∈ Y.

Then �yi� < 1 − β , and limi �Pyi� = c(Y). Therefore, �P|Y� > c(Y), which is
impossible.

Thus, the sequence (ξn) converges to some ξ0 ∈ �2 . Then x = c(Y) ⊕ (1 − c(Y))ξ0 is
the limit of the sequence tn ⊕ (1− tn)ξn , hence it belongs to Y . Clearly, �Px� = c(Y),
and Y = span[x, Y ∩ �2]. Moreover, any ξ ∈ Y ∩ �2 is orthogonal to ξ0 . Indeed,
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otherwise there exists ξ ∈ Y ∩ �2 and z ∈ C s.t. �ξ0 + zξ� < �ξ0�. Then x� =
x + (0 ⊕ ξ) = c(Y) ⊕ (ξ0 + zξ) belongs to Y , �x�� < 1, and �Px�� = c(Y), which is
impossible.

For t ∈ [0, 1], define φ(t) = t +
�

(1 − t)2 + 1. Clearly, φ is continuous and
increasing.

Lemma 8.2 For Y ∈ S(X),

φ(c(Y)) = sup { lim inf
i

�x + yi� : x, yi ∈ Y, �x� = �yi� = 1, yi
w
→ 0}.

Moreover, there exist a norm 1 x ∈ Y , and a normalized weakly null sequence (yi) in
Y , such that φ(c(Y)) = �x + yi� for every i.

Proof Assume c(Y) ∈ (0, 1) (only minimal changes are needed to handle c(Y) ∈

{0, 1}). Write x = t⊕ (1− t)ξ and yi = ti ⊕ (1− ti)ξi . Here, t, ti ∈ [0, 1], ξi ∈ �2 , and
�ξi� = 1. As yi → 0 weakly, ti → 0, and �ξ, ξi� → 0. Therefore, limi �x+yi� = φ(ti).
Taking the supremum over all x ∈ Y , we prove the desired equality. Furthermore, by
Lemma 8.1, Y = span[x, Y ∩ �2], where x = c(Y) ⊕ (1 − c(Y))ξ0 , ξ0 ∈ �2 has norm
1, and Y ∩ �2 is orthogonal to ξ0 . Let (ξi) be an orthonormal basis in Y ∩ �2 . Then
φ(c(Y)) = �x + yi� for every i, and yi

w
→ 0.

Lemma 8.3 If Y and Z are infinite dimensional subspaces of X , and Y is almost
isometrically embeddable into Z , then c(Y) � c(Z).

Proof By definition, for every λ ∈ (1, 1.1), there exist a subspace W �→ Z and a
contraction T : Y → W with �T−1� < λ. It suffices to show that

(8–1) φ(c(W)) ≥ λ−1φ(c(Y)) − 2(λ− 1).

Indeed, then we would conclude

φ(c(Z)) ≥ φ(c(W)) ≥ λ−1φ(c(Y)) − 2(λ− 1).

As the above inequality holds for any λ > 1, we conclude that φ(c(Y)) � φ(c(Z)). By
the monotonicity of φ, c(Y) � c(Z).

By Lemma 8.2, there exists a normalized weakly null sequence (yi) in Y , and a norm
one x ∈ Y , such that φ(c(Y)) = �x + yi�. In the space W , consider the elements
x� = Tx/�Tx�, and y�i = Tyi/�Tyi�. Then the sequence (y�i) is weakly null, and

(8–2) �x� + y�i� ≥ �T(x + yi)� − �(1 − �Tx�−1)Tx� − �(1 − �Tyi�
−1)Tyi�.
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But �T−1��T(x + yi)� ≥ �x + yi�, hence �T(x + yi)� > λ−1φ(c(Y)). Furthermore,
1 ≥ �Tx� > λ−1 , hence �(1−�Tx�−1)Tx� < λ− 1. Similarly, �(1−�Tyi�

−1)Tyi� <
λ− 1. By (8–2), �x�+ y�i� > λ−1φ(c(Y))− 2(λ− 1). Applying Lemma 8.2, we obtain
(8–1).

Lemma 8.4 If Y and Z are infinite dimensional subspaces of X , and c(Y) = c(Z),
then Y is isometric to Z .

Proof We consider the case c(Y) = c(Z) ∈ (0, 1) (the extreme cases of c(Y) = c(Z) ∈
{0, 1} are handled similarly). By Lemma 8.1, Y contains a norm one y = c(Y)⊕ξY ∈ Y
(note that �ξY� = 1 − c(Y)), s.t. Y = span[y, Y ∩ �2], and Y � = Y ∩ �2 is orthogonal
to ξY . Thus, for any ξ ∈ Y � , �y + ξ� = c(Y) +

�
(1 − c(Y))2 + �ξ�2 . Similarly,

Z = span[z, Z�], and �z + η� = c(Z) +
�

(1 − c(Z))2 + �η�2 for any η ∈ Z� . As Y �

and Z� are both infinite dimensional separable Hilbert spaces, there exists an isometry
T � from Y � onto Z� . We complete the proof by defining the isometry T from Y onto
Z by setting Ty = z, and T|Y� = T � .

Proof of Theorem 1.4 By Lemmas 8.3 and 8.4, the following statements are equiv-
alent for Y, Z ∈ S(X): (i) Y and Z are isometric, (ii) d(Y, Z) = 1, (iii) Y and Z are
isometrically bi-embeddable, (iv) Y and Z are almost isometrically bi-embeddable, (v)
c(Y) = c(Z). Denote that canonical basis for �2 by e0, e1, . . ., and consider a map

Φ : [0, 1] → S(X) : t → span[t ⊕ (1 − t)e0, 0 ⊕ e1, 0 ⊕ e2, . . .].

Then c(Φ(t)) = t , hence Φ(t1) and Φ(t2) satisfy any (equivalently, all) of the relations
(i) – (iv) iff t1 = t2 . It remains to prove that the maps Φ and c are Borel.

To handle Φ, consider an open ball U ⊂ X with the center at α⊕
�N

i=0 βiei and radius
r . Then Φ(t) ∩ U �= ∅ iff there exist λ0, . . . ,λN ∈ Q s.t.

|α− tλ0|+
�
|β0 − (1 − t)λ0|

2 +
N�

i=1

|βi − λi|
2
�1/2

< r.

This inequality describes a Borel subset of [0, 1]. As any open subset of X is a
countable union of open balls, the map Φ is Borel.

To deal with c, consider the sets

Ut = {s ⊕ ξ ∈ R⊕1 �2 : |s| > t, �ξ� <
�

1 − t2}

(t ∈ [0, 1]). Clearly, Ut is an open subset of X , and c(Y) > t iff Y ∩ Ut �= ∅.

Remark 8.5 Theorem 1.4 holds not only for R ⊕1 �2 , but also for R ⊕p �2 , for
1 � p < 2.
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